Skip to main content

discrete mathematics: Venn Diagrams


Venn Diagrams

Venn diagram, invented in 1880 by John Venn, is a schematic diagram that shows all possible logical relations between different mathematical sets.
Examples
Venn Diagram

Set Operations

Set Operations include Set Union, Set Intersection, Set Difference, Complement of Set, and Cartesian Product.

Set Union

The union of sets A and B (denoted by AB) is the set of elements which are in A, in B, or in both A and B. Hence, AB={x|xA OR xB}.
Example − If A={10,11,12,13} and B = {13,14,15}, then AB={10,11,12,13,14,15}. (The common element occurs only once)
Set Union

Set Intersection

The intersection of sets A and B (denoted by AB) is the set of elements which are in both A and B. Hence, AB={x|xA AND xB}.
Example − If A={11,12,13} and B={13,14,15}, then AB={13}.
Set Intersection

Set Difference/ Relative Complement

The set difference of sets A and B (denoted by AB) is the set of elements which are only in A but not in B. Hence, AB={x|xA AND xB}.
Example − If A={10,11,12,13} and B={13,14,15}, then (AB)={10,11,12} and (BA)={14,15}. Here, we can see (AB)(BA)
Set Difference

Complement of a Set

The complement of a set A (denoted by A) is the set of elements which are not in set A. Hence, A={x|xA}.
More specifically, A=(UA) where U is a universal set which contains all objects.
Example − If A={x|x belongstosetofoddintegers} then A={y|y doesnotbelongtosetofoddintegers}
Complement Set

Cartesian Product / Cross Product

The Cartesian product of n number of sets A1,A2,An denoted as A1×A2×An can be defined as all possible ordered pairs (x1,x2,xn)where x1A1,x2A2,xnAn
Example − If we take two sets A={a,b} and B={1,2},
The Cartesian product of A and B is written as − A×B={(a,1),(a,2),(b,1),(b,2)}
The Cartesian product of B and A is written as − B×A={(1,a),(1,b),(2,a),(2,b)}

Power Set

Power set of a set S is the set of all subsets of S including the empty set. The cardinality of a power set of a set S of cardinality n is 2n. Power set is denoted as P(S).
Example −
For a set S={a,b,c,d} let us calculate the subsets −
  • Subsets with 0 elements − {} (the empty set)
  • Subsets with 1 element − {a},{b},{c},{d}
  • Subsets with 2 elements − {a,b},{a,c},{a,d},{b,c},{b,d},{c,d}
  • Subsets with 3 elements − {a,b,c},{a,b,d},{a,c,d},{b,c,d}
  • Subsets with 4 elements − {a,b,c,d}
Hence, P(S)=
{{},{a},{b},{c},{d},{a,b},{a,c},{a,d},{b,c},{b,d},{c,d},{a,b,c},{a,b,d},{a,c,d},{b,c,d},{a,b,c,d}}
|P(S)|=24=16
Note − The power set of an empty set is also an empty set.
|P({})|=20=1

Partitioning of a Set

Partition of a set, say S, is a collection of n disjoint subsets, say P1,P2,Pnthat satisfies the following three conditions −
  • Pi does not contain the empty set.
    [Pi{} for all 0<in]
  • The union of the subsets must equal the entire original set.
    [P1P2Pn=S]
  • The intersection of any two distinct sets is empty.
    [PaPb={}, for ab where na,b0]
Example
Let S={a,b,c,d,e,f,g,h}
One probable partitioning is {a},{b,c,d},{e,f,g,h}
Another probable partitioning is {a,b},{c,d},{e,f,g,h}

Bell Numbers

Bell numbers give the count of the number of ways to partition a set. They are denoted by Bn where n is the cardinality of the set.
Example −
Let S={1,2,3}n=|S|=3
The alternate partitions are −
1. ,{1,2,3}
2. {1},{2,3}
3. {1,2},{3}
4. {1,3},{2}
5. {1},{2},{3}
Hence 

Comments

Popular posts from this blog

Discrete Mathematics - Rules of Inference

To deduce new statements from the statements whose truth that we already know,  Rules of Inference  are used. What are Rules of Inference for? Mathematical logic is often used for logical proofs. Proofs are valid arguments that determine the truth values of mathematical statements. An argument is a sequence of statements. The last statement is the conclusion and all its preceding statements are called premises (or hypothesis). The symbol “ ∴ ∴ ”, (read therefore) is placed before the conclusion. A valid argument is one where the conclusion follows from the truth values of the premises. Rules of Inference provide the templates or guidelines for constructing valid arguments from the statements that we already have. Table of Rules of Inference Rule of Inference Name Rule of Inference Name P ∴ P ∨ Q P ∴ P ∨ Q Addition P ∨ Q ¬ P ∴ Q P ∨ Q ¬ P ∴ Q Disjunctive Syllogism P Q ∴ P ∧ Q P Q ∴ P ∧ Q Conjunction P → Q Q → R ∴ P → R P → Q Q → R ∴ P → R ...

Digital Circuits - Shift Registers

We know that one flip-flop can store one-bit of information. In order to store multiple bits of information, we require multiple flip-flops. The group of flip-flops, which are used to hold (store) the binary data is known as  register . If the register is capable of shifting bits either towards right hand side or towards left hand side is known as  shift register . An ‘N’ bit shift register contains ‘N’ flip-flops. Following are the four types of shift registers based on applying inputs and accessing of outputs. Serial In − Serial Out shift register Serial In − Parallel Out shift register Parallel In − Serial Out shift register Parallel In − Parallel Out shift register Serial In − Serial Out (SISO) Shift Register The shift register, which allows serial input and produces serial output is known as Serial In – Serial Out  (SISO)  shift register. The  block diagram  of 3-bit SISO shift register is shown in the following figure. This block d...