Skip to main content

Document

Comments

Popular posts from this blog

Digital Circuits - Shift Registers

We know that one flip-flop can store one-bit of information. In order to store multiple bits of information, we require multiple flip-flops. The group of flip-flops, which are used to hold (store) the binary data is known as  register . If the register is capable of shifting bits either towards right hand side or towards left hand side is known as  shift register . An ‘N’ bit shift register contains ‘N’ flip-flops. Following are the four types of shift registers based on applying inputs and accessing of outputs. Serial In − Serial Out shift register Serial In − Parallel Out shift register Parallel In − Serial Out shift register Parallel In − Parallel Out shift register Serial In − Serial Out (SISO) Shift Register The shift register, which allows serial input and produces serial output is known as Serial In – Serial Out  (SISO)  shift register. The  block diagram  of 3-bit SISO shift register is shown in the following figure. This block d...

Discrete Mathematics - Rules of Inference

To deduce new statements from the statements whose truth that we already know,  Rules of Inference  are used. What are Rules of Inference for? Mathematical logic is often used for logical proofs. Proofs are valid arguments that determine the truth values of mathematical statements. An argument is a sequence of statements. The last statement is the conclusion and all its preceding statements are called premises (or hypothesis). The symbol “ ∴ ∴ ”, (read therefore) is placed before the conclusion. A valid argument is one where the conclusion follows from the truth values of the premises. Rules of Inference provide the templates or guidelines for constructing valid arguments from the statements that we already have. Table of Rules of Inference Rule of Inference Name Rule of Inference Name P ∴ P ∨ Q P ∴ P ∨ Q Addition P ∨ Q ¬ P ∴ Q P ∨ Q ¬ P ∴ Q Disjunctive Syllogism P Q ∴ P ∧ Q P Q ∴ P ∧ Q Conjunction P → Q Q → R ∴ P → R P → Q Q → R ∴ P → R ...

discrete mathematics:Introduction to Trees

Tree  is a discrete structure that represents hierarchical relationships between individual elements or nodes. A tree in which a parent has no more than two children is called a binary tree. Tree and its Properties Definition  − A Tree is a connected acyclic undirected graph. There is a unique path between every pair of vertices in  G G . A tree with N number of vertices contains  ( N − 1 ) ( N − 1 )  number of edges. The vertex which is of 0 degree is called root of the tree. The vertex which is of 1 degree is called leaf node of the tree and the degree of an internal node is at least 2. Example  − The following is an example of a tree − Centers and Bi-Centers of a Tree The center of a tree is a vertex with minimal eccentricity. The eccentricity of a vertex  X X  in a tree  G G  is the maximum distance between the vertex  X X  and any other vertex of the tree. The maximum eccentricity is the tree diameter. If a ...