Skip to main content

Discrete Mathematics -Propositional Equivalences


Propositional Equivalences

Two statements X and Y are logically equivalent if any of the following two conditions hold −
  • The truth tables of each statement have the same truth values.
  • The bi-conditional statement XY is a tautology.
Example − Prove ¬(AB)and[(¬A)(¬B)] are equivalent

Testing by 1st method (Matching truth table)

ABA ∨ B¬ (A ∨ B)¬ A¬ B[(¬ A) ∧ (¬ B)]
TrueTrueTrueFalseFalseFalseFalse
TrueFalseTrueFalseFalseTrueFalse
FalseTrueTrueFalseTrueFalseFalse
FalseFalseFalseTrueTrueTrueTrue
Here, we can see the truth values of ¬(AB)and[(¬A)(¬B)] are same, hence the statements are equivalent.

Testing by 2nd method (Bi-conditionality)

AB¬ (A ∨ B )[(¬ A) ∧ (¬ B)][¬ (A ∨ B)] ⇔ [(¬ A ) ∧ (¬ B)]
TrueTrueFalseFalseTrue
TrueFalseFalseFalseTrue
FalseTrueFalseFalseTrue
FalseFalseTrueTrueTrue
As [¬(AB)][(¬A)(¬B)] is a tautology, the statements are equivalent.

Inverse, Converse, and Contra-positive

Implication / if-then () is also called a conditional statement. It has two parts −
  • Hypothesis, p
  • Conclusion, q
As mentioned earlier, it is denoted as pq.
Example of Conditional Statement − “If you do your homework, you will not be punished.” Here, "you do your homework" is the hypothesis, p, and "you will not be punished" is the conclusion, q.
Inverse − An inverse of the conditional statement is the negation of both the hypothesis and the conclusion. If the statement is “If p, then q”, the inverse will be “If not p, then not q”. Thus the inverse of pq is ¬p¬q.
Example − The inverse of “If you do your homework, you will not be punished” is “If you do not do your homework, you will be punished.”
Converse − The converse of the conditional statement is computed by interchanging the hypothesis and the conclusion. If the statement is “If p, then q”, the converse will be “If q, then p”. The converse of pq is qp.
Example − The converse of "If you do your homework, you will not be punished" is "If you will not be punished, you do your homework”.
Contra-positive − The contra-positive of the conditional is computed by interchanging the hypothesis and the conclusion of the inverse statement. If the statement is “If p, then q”, the contra-positive will be “If not q, then not p”. The contra-positive of pq is ¬q¬p.
Example − The Contra-positive of " If you do your homework, you will not be punished” is "If you are punished, you did not do your homework”.

Duality Principle

Duality principle states that for any true statement, the dual statement obtained by interchanging unions into intersections (and vice versa) and interchanging Universal set into Null set (and vice versa) is also true. If dual of any statement is the statement itself, it is said self-dual statement.
Example − The dual of (AB)C is (AB)C

Normal Forms

We can convert any proposition in two normal forms −
  • Conjunctive normal form
  • Disjunctive normal form

Conjunctive Normal Form

A compound statement is in conjunctive normal form if it is obtained by operating AND among variables (negation of variables included) connected with ORs. In terms of set operations, it is a compound statement obtained by Intersection among variables connected with Unions.
Examples
  • (AB)(AC)(BCD)
  • (PQ)(QR)

Disjunctive Normal Form

A compound statement is in conjunctive normal form if it is obtained by operating OR among variables (negation of variables included) connected with ANDs. In terms of set operations, it is a compound statement obtained by Union among variables connected with Intersections.
Examples
  • (AB)(AC)(BCD)

Comments

Popular posts from this blog

Discrete Mathematics - Rules of Inference

To deduce new statements from the statements whose truth that we already know,  Rules of Inference  are used. What are Rules of Inference for? Mathematical logic is often used for logical proofs. Proofs are valid arguments that determine the truth values of mathematical statements. An argument is a sequence of statements. The last statement is the conclusion and all its preceding statements are called premises (or hypothesis). The symbol “ ∴ ∴ ”, (read therefore) is placed before the conclusion. A valid argument is one where the conclusion follows from the truth values of the premises. Rules of Inference provide the templates or guidelines for constructing valid arguments from the statements that we already have. Table of Rules of Inference Rule of Inference Name Rule of Inference Name P ∴ P ∨ Q P ∴ P ∨ Q Addition P ∨ Q ¬ P ∴ Q P ∨ Q ¬ P ∴ Q Disjunctive Syllogism P Q ∴ P ∧ Q P Q ∴ P ∧ Q Conjunction P → Q Q → R ∴ P → R P → Q Q → R ∴ P → R ...

Digital Circuits - Shift Registers

We know that one flip-flop can store one-bit of information. In order to store multiple bits of information, we require multiple flip-flops. The group of flip-flops, which are used to hold (store) the binary data is known as  register . If the register is capable of shifting bits either towards right hand side or towards left hand side is known as  shift register . An ‘N’ bit shift register contains ‘N’ flip-flops. Following are the four types of shift registers based on applying inputs and accessing of outputs. Serial In − Serial Out shift register Serial In − Parallel Out shift register Parallel In − Serial Out shift register Parallel In − Parallel Out shift register Serial In − Serial Out (SISO) Shift Register The shift register, which allows serial input and produces serial output is known as Serial In – Serial Out  (SISO)  shift register. The  block diagram  of 3-bit SISO shift register is shown in the following figure. This block d...

discrete mathematics: Venn Diagrams

Venn Diagrams Venn diagram, invented in 1880 by John Venn, is a schematic diagram that shows all possible logical relations between different mathematical sets. Examples Set Operations Set Operations include Set Union, Set Intersection, Set Difference, Complement of Set, and Cartesian Product. Set Union The union of sets A and B (denoted by  A ∪ B A ∪ B ) is the set of elements which are in A, in B, or in both A and B. Hence,  A ∪ B = { x | x ∈ A   O R   x ∈ B } A ∪ B = { x | x ∈ A   O R   x ∈ B } . Example  − If  A = { 10 , 11 , 12 , 13 } A = { 10 , 11 , 12 , 13 }  and B =  { 13 , 14 , 15 } { 13 , 14 , 15 } , then  A ∪ B = { 10 , 11 , 12 , 13 , 14 , 15 } A ∪ B = { 10 , 11 , 12 , 13 , 14 , 15 } . (The common element occurs only once) Set Intersection The intersection of sets A and B (denoted by  A ∩ B A ∩ B ) is the set of elements which are in both A and B. Hence,  A ∩ B = { x | x ∈ A   A N D...