Simplification Using Algebraic Functions
In this approach, one Boolean expression is minimized into an equivalent expression by applying Boolean identities.
Problem 1
Minimize the following Boolean expression using Boolean identities −
Solution
Given,
Or,
[By idempotent law, BC’ = BC’ + BC’]
Or,
Or,
[By distributive laws]
Or,
[ (C' + C) = 1 and absorption law (B + AB')= (B + A)]
Or,
[ B.1 = B ]
Or,
Or,
[ (A' + 1) = 1 ]
Or,
[ As, B.1 = B ]
Or,
Or,
Or,
[As, (1 + C') = 1]
Or,
[As, B.1 = B]
So,is the minimized form.
Problem 2
Minimize the following Boolean expression using Boolean identities −
Solution
Given,
Or, [Applying distributive Rule]
Or, [Applying Idempotent Law]
Or, [Applying distributive Law]
Or, [Applying dominance Law]
Or, [Applying distributive Law]
Or, [Applying dominance Law]
Or, [Applying dominance Law]
So, is the minimized form.
Karnaugh Maps
The Karnaugh map (K–map), introduced by Maurice Karnaughin in 1953, is a grid-like representation of a truth table which is used to simplify boolean algebra expressions. A Karnaugh map has zero and one entries at different positions. It provides grouping together Boolean expressions with common factors and eliminates unwanted variables from the expression. In a K-map, crossing a vertical or horizontal cell boundary is always a change of only one variable.
Example 1
An arbitrary truth table is taken below −
A | B | A operation B |
---|---|---|
0 | 0 | w |
0 | 1 | x |
1 | 0 | y |
1 | 1 | z |
Now we will make a k-map for the above truth table −
Example 2
Now we will make a K-map for the expression − AB+ A’B’
Simplification Using K-map
K-map uses some rules for the simplification of Boolean expressions by combining together adjacent cells into single term. The rules are described below −
Rule 1 − Any cell containing a zero cannot be grouped.
Wrong grouping
Rule 2 − Groups must contain 2n cells (n starting from 1).
Wrong grouping
Rule 3 − Grouping must be horizontal or vertical, but must not be diagonal.
Wrong diagonal grouping
Proper vertical grouping
Proper horizontal grouping
Rule 4 − Groups must be covered as largely as possible.
Insufficient grouping
Proper grouping
Rule 5 − If 1 of any cell cannot be grouped with any other cell, it will act as a group itself.
Proper grouping
Rule 6 − Groups may overlap but there should be as few groups as possible.
Proper grouping
Rule 7 − The leftmost cell/cells can be grouped with the rightmost cell/cells and the topmost cell/cells can be grouped with the bottommost cell/cells.
Proper grouping
Problem
Minimize the following Boolean expression using K-map −
Solution
Each term is put into k-map and we get the following −
K-map for F (A, B, C)
Now we will group the cells of 1 according to the rules stated above −
K-map for F (A, B, C)
We have got two groups which are termed as and . Hence, . It is the minimized form.
Comments
Post a Comment