Skip to main content

Digital Circuits - Decoders

Decoder is a combinational circuit that has ‘n’ input lines and maximum of 2noutput lines. One of these outputs will be active High based on the combination of inputs present, when the decoder is enabled. That means decoder detects a particular code. The outputs of the decoder are nothing but the min terms of ‘n’ input variables (lines), when it is enabled.

2 to 4 Decoder

Let 2 to 4 Decoder has two inputs A1 & A0 and four outputs Y3, Y2, Y1 & Y0. The block diagram of 2 to 4 decoder is shown in the following figure.
2 to 4 Decoder
One of these four outputs will be ‘1’ for each combination of inputs when enable, E is ‘1’. The Truth table of 2 to 4 decoder is shown below.
EnableInputsOutputs
EA1A0Y3Y2Y1Y0
0xx0000
1000001
1010010
1100100
1111000
From Truth table, we can write the Boolean functions for each output as
Y3=E.A1.A0

Y2=E.A1.A0

Y1=E.A1.A0

Y0=E.A1.A0

Each output is having one product term. So, there are four product terms in total. We can implement these four product terms by using four AND gates having three inputs each & two inverters. The circuit diagram of 2 to 4 decoder is shown in the following figure.
2 to 4 Decoder Circuit Diagram
Therefore, the outputs of 2 to 4 decoder are nothing but the min terms of two input variables A1 & A0, when enable, E is equal to one. If enable, E is zero, then all the outputs of decoder will be equal to zero.
Similarly, 3 to 8 decoder produces eight min terms of three input variables A2, A1 & A0 and 4 to 16 decoder produces sixteen min terms of four input variables A3, A2, A1 & A0.

Implementation of Higher-order Decoders

Now, let us implement the following two higher-order decoders using lower-order decoders.
  • 3 to 8 decoder
  • 4 to 16 decoder

3 to 8 Decoder

In this section, let us implement 3 to 8 decoder using 2 to 4 decoders. We know that 2 to 4 Decoder has two inputs, A1 & A0 and four outputs, Y3 to Y0. Whereas, 3 to 8 Decoder has three inputs A2, A1 & A0 and eight outputs, Y7 to Y0.
We can find the number of lower order decoders required for implementing higher order decoder using the following formula.
Requirednumberoflowerorderdecoders=m2m1

Where,
m1 is the number of outputs of lower order decoder.
m2 is the number of outputs of higher order decoder.
Here, m1 = 4 and m2 = 8. Substitute, these two values in the above formula.
Requirednumberof2to4decoders=84=2

Therefore, we require two 2 to 4 decoders for implementing one 3 to 8 decoder. The block diagram of 3 to 8 decoder using 2 to 4 decoders is shown in the following figure.
2 to 8 Decoder
The parallel inputs A1 & A0 are applied to each 2 to 4 decoder. The complement of input A2 is connected to Enable, E of lower 2 to 4 decoder in order to get the outputs, Y3 to Y0. These are the lower four min terms. The input, A2 is directly connected to Enable, E of upper 2 to 4 decoder in order to get the outputs, Y7to Y4. These are the higher four min terms.

4 to 16 Decoder

In this section, let us implement 4 to 16 decoder using 3 to 8 decoders. We know that 3 to 8 Decoder has three inputs A2, A1 & A0 and eight outputs, Y7 to Y0. Whereas, 4 to 16 Decoder has four inputs A3, A2, A1 & A0 and sixteen outputs, Y15 to Y0
We know the following formula for finding the number of lower order decoders required.
Requirednumberoflowerorderdecoders=m2m1

Substitute, m1 = 8 and m2 = 16 in the above formula.
Requirednumberof3to8decoders=168=2

Therefore, we require two 3 to 8 decoders for implementing one 4 to 16 decoder. The block diagram of 4 to 16 decoder using 3 to 8 decoders is shown in the following figure.
4 to 16 Decoder
The parallel inputs A2, A1 & A0 are applied to each 3 to 8 decoder. The complement of input, A3 is connected to Enable, E of lower 3 to 8 decoder in order to get the outputs, Y7 to Y0. These are the lower eight min terms. The input, A3 is directly connected to Enable, E of upper 3 to 8 decoder in order to get the outputs, Y15 to Y8. These are the higher eight min terms.

Comments

Popular posts from this blog

Discrete Mathematics - Rules of Inference

To deduce new statements from the statements whose truth that we already know,  Rules of Inference  are used. What are Rules of Inference for? Mathematical logic is often used for logical proofs. Proofs are valid arguments that determine the truth values of mathematical statements. An argument is a sequence of statements. The last statement is the conclusion and all its preceding statements are called premises (or hypothesis). The symbol “ ∴ ∴ ”, (read therefore) is placed before the conclusion. A valid argument is one where the conclusion follows from the truth values of the premises. Rules of Inference provide the templates or guidelines for constructing valid arguments from the statements that we already have. Table of Rules of Inference Rule of Inference Name Rule of Inference Name P ∴ P ∨ Q P ∴ P ∨ Q Addition P ∨ Q ¬ P ∴ Q P ∨ Q ¬ P ∴ Q Disjunctive Syllogism P Q ∴ P ∧ Q P Q ∴ P ∧ Q Conjunction P → Q Q → R ∴ P → R P → Q Q → R ∴ P → R Hypothet

5 best private search engines and why you need to use them.

5 best private search engines and why you need to use them  By:  Boniyeamin laju   ▪   May 31, 2019   ▪ 3 minute read 5 best private search engines and why you need to use  Normal browsers like Google and Bing are designed to track users’ activities and profile their online behavior. The primary reason for this is to create advertisements that will be attractive to the user. However, there-there is always the concern of  personal information being compromised  due to security breaches, state surveillance, and unauthorized data sharing. Fortunately,  private search engines  can help keep your private information safe. Simply put, Private Search Engines, also known as PSE, uses proxy and encrypted search request to  hide your personal information  from anyone looking to misuse your information. Below you will find more information about what a PSE is, how it works, and where to find the best private search engines on the internet

Discrete Mathematics - Propositional Logic

The rules of mathematical logic specify methods of reasoning mathematical statements. Greek philosopher, Aristotle, was the pioneer of logical reasoning. Logical reasoning provides the theoretical base for many areas of mathematics and consequently computer science. It has many practical applications in computer science like design of computing machines, artificial intelligence, definition of data structures for programming languages etc. Propositional Logic  is concerned with statements to which the truth values, “true” and “false”, can be assigned. The purpose is to analyze these statements either individually or in a composite manner. Prepositional Logic – Definition A proposition is a collection of declarative statements that has either a truth value "true” or a truth value "false". A propositional consists of propositional variables and connectives. We denote the propositional variables by capital letters (A, B, etc). The connectives connect the propositi